Sebastian Kraves: The era of personal DNA testing is here-1
Imagine that you're a pig farmer. You live on a small farm in the Philippines. Your animals are your family's sole source of income -- as long as they're healthy. You know that any day, one of your pigs can catch the flu, the swine flu. Living in tight quarters, one pig coughing and sneezing may soon lead to the next pig coughing and sneezing, until an outbreak of swine flu has taken over your farm. If it's a bad enough virus, the health of your herd may be gone in the blink of an eye. If you called in a veterinarian, he or she would visit your farm and take samples from your pigs' noses and mouths. But then they would have to drive back into the city to test those samples in their central lab. Two weeks later, you'd hear back the results. Two weeks may be just enough time for infection to spread and take away your way of life.
But it doesn't have to be that way. Today, farmers can take those samples themselves. They can jump right into the pen and swab their pigs' noses and mouths with a little filter paper, place that little filter paper in a tiny tube, and mix it with some chemicals that will extract genetic material from their pigs' noses and mouths. And without leaving their farms, they take a drop of that genetic material and put it into a little analyzer smaller than a shoebox, program it to detect DNA or RNA from the swine flu virus, and within one hour get back the results, visualize the results. This reality is possible because today we're living in the era of personal DNA technology. Every one of us can actually test DNA ourselves.
DNA is the fundamental molecule the carries genetic instructions that help build the living world. Humans have DNA. Pigs have DNA. Even bacteria and some viruses have DNA too. The genetic instructions encoded in DNA inform how our bodies develop, grow, function. And in many cases, that same information can trigger disease. Your genetic information is strung into a long and twisted molecule, the DNA double helix, that has over three billion letters, beginning to end. But the lines that carry meaningful information are usually very short -- a few dozen to several thousand letters long. So when we're looking to answer a question based on DNA, we actually don't need to read all those three billion letters, typically. That would be like getting hungry at night and having to flip through the whole phone book from cover to cover, pausing at every line, just to find the nearest pizza joint.
Luckily, three decades ago, humans started to invent tools that can find any specific line of genetic information. These DNA machines are wonderful. They can find any line in DNA. But once they find it, that DNA is still tiny, and surrounded by so much other DNA, that what these machines then do is copy the target gene, and one copy piles on top of another, millions and millions and millions of copies, until that gene stands out against the rest; until we can visualize it, interpret it, read it, understand it, until we can answer: Does my pig have the flu? Or other questions buried in our own DNA: Am I at risk of cancer? Am I of Irish descent? Is that child my son?
Om Namah Shivay
No comments:
Post a Comment