Sebastian Kraves: The era of personal DNA testing is here-2
This ability to make copies of DNA, as simple as it sounds, has transformed our world. Scientists use it every day to detect and address disease, to create innovative medicines, to modify foods, to assess whether our food is safe to eat or whether it's contaminated with deadly bacteria. Even judges use the output of these machines in court to decide whether someone is innocent or guilty based on DNA evidence. The inventor of this DNA-copying technique was awarded the Nobel Prize in Chemistry in 1993. But for 30 years, the power of genetic analysis has been confined to the ivory tower, or bigwig PhD scientist work. Well, several companies around the world are working on making this same technology accessible to everyday people like the pig farmer, like you.
I cofounded one of these companies. Three years ago, together with a fellow biologist and friend of mine, Zeke Alvarez Saavedra, we decided to make personal DNA machines that anyone could use. Our goal was to bring DNA science to more people in new places. We started working in our basements. We had a simple question: What could the world look like if everyone could analyze DNA? We were curious, as curious as you would have been if I had shown you this picture in 1980.
You would have thought, "Wow! I can now call my Aunt Glenda from the car and wish her a happy birthday. I can call anyone, anytime. This is the future!" Little did you know, you would tap on that phone to make dinner reservations for you and Aunt Glenda to celebrate together. With another tap, you'd be ordering her gift. And yet one more tap, and you'd be "liking" Auntie Glenda on Facebook. And all of this, while sitting on the toilet.
It is notoriously hard to predict where new technology might take us. And the same is true for personal DNA technology today.
For example, I could never have imagined that a truffle farmer, of all people, would use personal DNA machines. Dr. Paul Thomas grows truffles for a living. We see him pictured here, holding the first UK-cultivated truffle in his hands, on one of his farms. Truffles are this delicacy that stems from a fungus growing on the roots of living trees. And it's a rare fungus. Some species may fetch 3,000, 7,000, or more dollars per kilogram. I learned from Paul that the stakes for a truffle farmer can be really high. When he sources new truffles to grow on his farms, he's exposed to the threat of knockoffs -- truffles that look and feel like the real thing, but they're of lower quality. But even to a trained eye like Paul's, even when looked at under a microscope, these truffles can pass for authentic. So in order to grow the highest quality truffles, the ones that chefs all over the world will fight over, Paul has to use DNA analysis. Isn't that mind-blowing? I bet you will never look at that black truffle risotto again without thinking of its genes.
But personal DNA machines can also save human lives. Professor Ian Goodfellow is a virologist at the University of Cambridge. Last year he traveled to Sierra Leone. When the Ebola outbreak broke out in Western Africa, he quickly realized that doctors there lacked the basic tools to detect and combat disease. Results could take up to a week to come back -- that's way too long for the patients and the families who are suffering. Ian decided to move his lab into Makeni, Sierra Leone. Here we see Ian Goodfellow moving over 10 tons of equipment into a pop-up tent that he would equip to detect and diagnose the virus and sequence it within 24 hours. But here's a surprise: the same equipment that Ian could use at his lab in the UK to sequence and diagnose Ebola, just wouldn't work under these conditions. We're talking 35 Celsius heat and over 90 percent humidity here. But instead, Ian could use personal DNA machines small enough to be placed in front of the air-conditioning unit to keep sequencing the virus and keep saving lives.
Om Namah Shivay
No comments:
Post a Comment